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IV. On the Discrimination of Maxima and Minima Solutions in the Calculus
of Variations.

By Epwarp P. CuLverweLL, M. 4., Fellow and Tutor, Trinity College, Dublin.

Communicated by BENgaMIN WiLLiaMsoN, M. A., F.R.S., Professor of Natural
Plalosophy in the University of Dublin.

Received June 5,—Read June 10, 1886.

THE criteria for distinguishing between the maximum and minimum values of
integrals have been investigated by many eminent mathematicians.® In 1786
LEGENDRE gave an imperfect discussion for the case where the function to be made a
maximum is [f(x, y, dy/dx) de. Nothing further seems to have been done till 1797,
when LAGRANGE pointed out, in his ¢ Théorie des Fonctions Analytiques,” published
in 1797, that LecEnDRE had supplied no means of showing that the operations
required for his process were not invalid through some of the multipliers becoming
zero or infinite, and he gives an example to show that LEGENDRE'S criterion, though
necessary, was not sufficient. In 1806 BruNacct,t an Italian mathematician, gave
an investigation which has the important advantage of being short, easily compre-
hensible, and perfectly general in character, but which is open to the same objection
as that brought against LEGENDRE'S method.t The next advance was made in 1836

# This sketch is founded on TopaUNTER’S valuable ¢ History of the Calculus of Variations.”
1 Bru~accr’s method may be explained as follows: Let

U:H‘(w, Y, 2, ZZ Zy) dz dy

be the function to be made a maximum, and let us denote dz/dz and dz/dy by p and ¢ respectively.
Thus, the limits of z being supposed fixed,

3U=H(df8z + % oy 4 df«s;,)am
%Jj(zf32+2df3zap+ f pr 72 df bpeg + 0 351)45“72/ LW

The first integral must be made to vanish by a relation between z, #, and y. Eliminate # for the
coeflicients in the second integral of (1) by means of this relation, and let it be written—

[[(As® +2Bézop + 2Céz8g + Pép + 2R ép &g + Q8¢ daedy. . . . . . (2)

Now, remark that, the limits being fixed, f&zﬂ (adw + Bdy) vanishes, whatever « and 8 may be, for
4.6.87
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96 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

by the illustrious JacoBr, who treats only of functions containing one dependent and
one independent variable. JacoBr says (TopHUNTER, Art. 219, p. 243): “I have
succeeded in supplying a great deficiency in the Calculus of Variations. In problems
on maxima and minima which depend on this calculus no general rule is known for
deciding whether a solution really gives a maximum or a minimum, or neither. It
has, indeed, been shown that the question amounts to determining whether the
integrals of a certain system of differential equations remain finite throughout the
limits of the integral which is to have a maximum or a minimum value. But the
integrals of these differential equations were not known, nor had any other method
been discovered for ascertaining whether they remain finite throughout the required
interval. I have, however, discovered that these integrals can be immediately
obtained when we have integrated the differential equations which must be satisfied
in order that the first variation may vanish.”

JACOBI then proceeds to state the result of his transformation for the cases where
the function to be integrated contains x, v, dy/dx, and x, y, dy/dx, d*y/da?, and in
this solution the analysis appears free from all objection, though, where he proceeds to
consider the general case, the investigation does not appear to be quite satisfactory in
form, inasmuch as higher and higher differential coefficients of 8y are successively
introduced into the discussion (see Art. 5). JAcoBI'S analysis is much more com-
plicated than BruNAccr's, its advantage being that the coefficients used in the trans-
formation could be easily determined; hence it supplied the means of ascertaining
whether they became infinite or not.

82 =0 all along this curve, and it may, therefore, be added to the integral (2) without altering its
value. Now,

Jézg (adz+ Bdy) =0= jj (di; (B &2 + (—% (aéz"")) da dy

= Aoy dBY g0 8z dp + & 5) :
jj((dy+dw) % 4 28 82 8p + 2a 62 8q ) du dy.

Adding this quantity to the integral, we get for the quantity under the integral sign in (2) the
expression ‘

{(A + %llf‘ + %)822 +2B+p)odp +2(C + «)dzdq + Pop? + 2R op &g + Qégg}dwdy.
Y
This expression cannot change sign if PQ — R? is positive, and
(PQ~R%><P(A+§§-+§£)—(B+/3>2> —(P(O+a)—(B+ARE>0. . . . (3)

We can determine « and B so that (3) shall be true, and hence, if PQ — R? be positive, the second
variation will be invariable in sign.

The objection to this method is that there is no means of ascertaining whether « and B remain finite
or not. If the region of integration be small, they can always be determined so as to satisfy (3). But
in general they become infinite when the integration extends over a large area. Thus, to complete the
solution, it is necessary to have some means of finding within what range of integration the criteria are
gufficient. It was because Brunaccr's method did not easily lend itself to the discussion of this problem
that Jacopr devised his far more intricate method.
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MINIMA SOLUTIONS IN THE CALCULUS OF VARIATIONS. 97

Jacosr did not himself give a detailed account of his process, but said that “ the
analysis just indicated requires a good knowledge of the Integral Calculus.” Various
demonstrations were subsequently given by different mathematicians. That of
DELAUNAY has been adopted by JELLETT and other English writers.

In 1852 MaINARDI devised a method somewhat similar to that of Brunacct, but
he endeavoured to remedy the omission in the latter by showing how to determine
the coefficients used in the transformation, the equations for determining these
coefficients being supplied by JAcoBI'S reasoning. But in this he was not successfuls
even in some of the simple cases which he discussed, and in the more complicated
cases the equations appear to be quite unmanageable.

In 1853 EiseNLoHR extended JAcorr's method to double integrals. In 1854 a
memoir by SpitzEr was published which seems to have been more complete than
MAINARDI'S ; but the most important advances were made a few years later when the
Theory of Determinants was applied by Hesse and by CrLEBscH to s1mphfy and
extend JAcoBr's methods.

From the foregoing sketch it will be seen that as early as 1806 the criteria had
been correctly given and simply proved, with the exception of one point, namely,
that there was no means of ascertaining for what range of integration the criteria
ceased to be sufficient. Jacoer endeavoured, by the help of a complicated analysis,
to remedy this defect; and, although all the efforts of later mathematicians have
been directed to the extending or simplifying of JAcoBI's method, the analysis is still
very complicated, and requires an intimate acquaintance with other branches of
mathematics.

All these methods, however, are open to the objection stated in Art. 5, and, further-
more, it appears to me, for the reasons briefly indicated in Art. 12, that, although the
results arrived at by these mathematicians are undoubtedly correct, it would be
impossible to give a strict proof of them by any method based on transformations.
However this may be, I cannot find that anyone has yet given a proof of them.
JAcoBI merely states the limits within which the criteria hold.

The chief object of the present paper is to show that a rigorous discussion of the
discriminating conditions can be given without introducing any analytical trans-
formations whatever, the results being obtained by reasoning from the fundamental
conceptions of the Calculus of Variations. In the first Part of the paper will, how-
ever, be found an analytical method leading to JAcoBr’s transformation, but free from
any serious difficulty. It is inserted chiefly on account of the historic interest of the
problem. I had extended this method to obtain the criteria for the case of any
integral whatever before I was aware that the results were not altogether new. Tt
was after finding the limits up to which the criteria were sufficient that I was led to
the general method given in Part II.

For convenience, a summary of contents is given below ; the numbers refer to the

MDCCCLXXXVIL—A. 0
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98. MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

articles. Those who desire to read only the general method will find Part II.
complete in itself.

Tt was originally intended that a tolerably complete account of the treatment of
the problem, when the limits were not all fixed, should be inserted, but the length to
which the paper has extended seems to render this inexpedient.

Parr 1.

Algebraie Transformations of the Second Variation.
1. Notation. : -
2, 3, and 4. General remarks on the problem for two variations, ¢ Synclastic” and
-~ “anticlastic ” functions. '
5 and 6. Examination of JAcoBr's method.
7 and 8. Comparison with algebraic method of this paper.
~ 9 and 10. Two variables—general case. _
11. Probable failure of the transformation if the limits widely separated.
12. Criterion given by the result of the transformation.’

Parr IL
The General Method. T

- 18 and 14. Conditions implied in the problem.
15, 8V and d*/dy? have the same sign for small range of integration.
16. Integration—Iimits within which the property holds.
17. General remarks on the foregoing proof.
18. Any number of variables—notation and limitations.
19. Statement of the general problem.
© 20. Criterion for the sign of 8°U where the “highest fluxions” of any dependent
variable are all of the same order, the integration extending over a small
“region only.
21. Limits within which the ecriterion is sufficient.
- 22, The “highest fluxions” are not all of the same order. The result includes
that of “Art. 20.
23. The highest of all the fluxions of any dependent variable appears in the first
degree only. B - '

Parr 1.
Algebraic Transformations of the Second Variation.

1. In the following pages the word “fluxion” will be used instead of the long
expression “differential coefficient.” ~When there is but one independent variable,
x, the successive fluxions of the dependent variables will be expressed in the known

notation
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MINIMA SOLUTIONS IN THE CALCULUS OF VARIATIONS. 99
d"l/ . dz. . » dn:l/ —
dz =Y 2T y, &C., &c., T y™, . L (1)

and the partial fluxions of a function (f) of these quantities with respect to any of
them, say y*, will be denoted by dffdy®. It will often be convenient to use a
bracket [ ] to denote the result of subtracting the value of the quantity in the
bracket, when taken at the lower limit of integration, from its value for the upper
limit; thus by [y Sy]:) is meant ¥, 8y; — v, 8y, In other cases, where it is unnecessary
to write out the limiting terms, the letter L will be used as an abbreviation for the
expression “ terms depending on the limits only,” as in the following equations : —

A A

j‘ydx:L—jx?dm:L+}§jx2.y.dx, e e o (2)

SOCIETY

where, though the letter L is the same in both equations, it does not necessarily
denote the same quantity. '

2. To obtain a clear insight into the nature of the problem before us, let us examine
it in the most simple and familiar case, that in which there is but one dependent and
one independent variable. Writing

U=[/(@yyy.. .y")de, . . . . . . . . (3)

OF

let us call V.U the total variation of U due to a change of form in g, by which it
becomes y < 8y (y being always a function of x):

VU= [< f5J+ df8y+ &e. +C§"J;{>8J("))‘,l“’

ot [ (o2 oy ek LSy L ()

1—§3f< f83/ +&c>dw+&c

) §

which we may write

S

V.U= 8U+ %SQU + 1—'2—§83U+ &C.,

where 8U is the part of V.U depending on the first powers of 8y and its fluxions,
8*U that depending on their second powers, 83U on their third, and so on. As usual,
these will be termed the first, second, and third variations of U, and so on.

8. The form of U having been determined so that the value of 86U vanishes inde-
pendently of the value of 8y, the terms which we have to examine are those of §*U.
This quantity, as obtained in the first instance, is explicitly a function of z,, and 8y.
But, as the value of y obtained by making 38U vanish is known in terms of x, 8*U
can be expressed in terms of x and 8y. When so expressed, 8*U may either remain
of the same sign, whatever function 8y may be of @, or else it may have one sign

02

SOCIETY

OF


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

100 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

when 8y is a suitably chosen function of @, and the opposite sign when another
expression is taken for 8y. In the former case the integral must be either a maximum
or a minimum ; a maximum if the sign of §U is constantly negative, and a minimum
if it is positive. In the latter case the integral is neither a maximum nor a minimum;
its only characteristic is that the first variation vanishes. Tt will save much useless
verbiage if we use a single word to express this latter class of integral, and the word
““anticlastic,” borrowed from geometry, seems a suitable one. It has also the advan-
tage of suggesting another term, “ synclastic,” for those functions which give either a
maximum or a minimum. With this explanation the problem before us is to ascertain
whether the integral U is synclastic or anticlastic. If it be the former, a glance will
enable us to determine which the result is, a maximum or a minimum.

4. We might reduce, by a real linear algebraic transformation, the part of 6*U under
the integral sign to the sum of n squares, and say that, if their coefficients be positive
all through the integration, then, whatever be the limiting values of the arbitrary
variations, the second variation must be essentially positive (at least unless dx
changes sign during the integration); but the converse of this is not true, for it does
not follow that, if the coefficients of the squares have diiferent signs, it is possible to
make the second variation change sign. If 8y, 8y . . . . 8y™ were all independent,
this converse would be true ; hence one element in the problem before us is to introduce,
in a suitable form, the interdependence of the quantities 8y, 8y . . . . 8y™. Again,
if the limits are not all arbitrary, there will be further limitations to the range of
values taken by 8y and its fluxions ; and the second element in the problem is to find
how these limitations to 8y and its fluxions affect the sign of the second variation.

5. JAcoBI'S method appears to me open to the serious objection that it is necessary
to its validity that the first (2n—1) fluxion of 8y should be continuous; so that the
discussion only proves that a curve AB fuifilling the synclastic condition gives a
better result than any infinitely near curve fulfilling the same limiting conditions, and
which 1s continuous to the 2n* fluxion of y. And it would not show that it was not
possible to find other broken curves fulfilling the same limiting conditions, and giving,
at our pleasure, a value to the integral either greater or less than that given by the
curve AB. Thus, for instance, in the case of least action, it would not show that the
action in the free trajectory was less than in any constrained path (which it is, in fact),
but only that it was less than that in any path for which the tangent had but. one
position at every point. To show for the general case that JAcoBI'S proof assumes
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MINTMA SOLUTIONS IN THE CALCULUS OF VARIATIONS. 101

this continuity of 8y would require a large amount of work, but it will be sufficient for
our purpose to take the simple case where the function to be made synclastic contains
only z, v, and .

Let us apply his general method to the integral *

(51 .
=1 v, 9)do
therefore
“ [d af -
| '8U=L'<d~];8y+;l'—§8y>clw;
integrating by parts, :
[ of _ddf
U=y y]o + I<dy dwdy) oy d.

Hence

& & Pf o Bf o
U = [Z/ Sy + 8y8y_0+[(dy8y+dydys <dydy y+ 2 8y>8ydx

It will save trouble if, in what follows, we use the abbreviations
af _ af _
dy — =Yy, dy Y,

oy W
dy2'— 002 dydy

and, in general, ;Z =Y,

=Y,.

=Yy and, in genera, @%F
Then we may write
BU = Y0 89" + Y 8y 87 )+ [( Yoy + You85 = 7 (You 8y + Y11 89) By o),
of which the part under the integral sign is
[ (YOO 8y + Y0 89 — Yo 8y — gy — Ty, 8@,‘) Sy dus
— H(YOO — %) Sy — <%1 87— Yy, 3};>} Syde. . . . . (5)
Now let % be a solution of the equation -

<Y00-~)z-—~7z°—Yn'z'=0.. R 1)

* JacoBI treats this case by a method not identical in form with the general method he gives.
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102 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

Multiply (6) by 8y%/z. dz, and subtract it from the part under the integral S1gn in
equation (5): then we have for the part under the integral sign

[(-Tay+ by iy Yu ; >8yolw ——[ i(Yn(;Sy —28)) ) ¥ da,
_ [Yn 8y —23)) Sﬂz ~ [ Yuy —=8) 5 (V) an
= [ruar=6 2] + [T (4)} 2
and, writing out the complete vdriation; we get

: . . ) 1 . .
BU = Yo 89" + Y898y + Y b8y — 280) ] + [ Y0 (5 (¥) ) 2

the final expression ; from this it is evident that, if Y, dw chariged sign in the course
of integration, the function could not be synclastic:

6. If the variation 8y were such that 8y suddenly changed from one finite value to

another, Sy must be infinite at that point; and the integration would not be permis-
sible, or, at least, it would require a justification which, so far as I am aware, has
never been considered necessary.

Again, it will be observed that the hml’omg values of Sy are introduced in the
process (though for this case it is easily seen that in the final result the terms in
which they appear are identically zero) '

‘What has been shown in this case is true in general : the first 2n fluxions of 8y are

brought in under the integral sign, and:of these the last n fluxions y®*V ... y® are
got rid of by integration. Again, the limiting values of the first 2n — 1 fluxions are
introduced outside the integral, and, of these, the n fluxions y* ... y®~V disappear

through their coefficients being identically zero; but the direct proof of this in the
general case would, so far as I can see, require transformations of even greater length
than those usually apphed to the part under the integral sign.

7. Tt was with the object of ascertaining whether it was necessary, in thé general
case, to assume the continuity of the value of 8y and its 2n — 1 fluxions that I first
considered the problem ; and I communicated to the British Association at Montreal
an account of a method which was free from this objection, and had the additional
advantage of a simplicity which enabled it to be easily extended to any number of
dependent variables ; and it is, in its main principles, applicable to the most general
case. ’ ' '

8. The application of this method to the precedmg case is as follows. Taking the
second variation in the form on p. 99, equation (4), in expanding V.U, we have
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MINIMA SOLUTIONS IN THE CALCULUS OF VARIATIONS. 103
OU = [ (Yoo 892 + 2Y,, 8y 8y + Yy, 892) dee.

Writing in this 68,y for 8y, where 0 is a function of at present unknown in form,
and expanding the result, we get

8U = f (Yoot 81 + 2Y,0 8,y (08, + 0 81y) + }YH 08,y + 08y)) dw
= [ (Bu® (Yool + 2Y1000 + Y,,0°) + 28,y 8y (Vo8 + Y1,00) + Y,,0°8,57) dl
Integrating by parts the term involving 8,y 8.9,
EU =[ (V" + Yliéé) 8iw*], + j | <Y0002 + éYloaa‘ + Y60 — ;fv (Y0 + Yllﬁé))slyQSm
4 [ (V628,57 e

The multiplier 8 is here quite arbitrary, and can therefore be determined so that
the quantity multiplying 8y* under the sign of integration shall vanish, and hence,
when this Value of @ is chosen, we have

U = [(Y,,* + Ynﬁﬂ) 81y2:| + .( Y1162 81?/2 d.

This is the same form as that in the other reduction, and it is easy to prove that 6
is a solution of the equation (6) used in finding # in JACOBI'S method. ‘

9. We have now given examples of the s1mplest cases. The method of treating
&°U, where

U= ff(x: Y, :;/’j' <. y’(”))dmnt a

will now be given in its shortest form.
Using the notation already adopted, we may write

Ssz(x,y, ?/, . y@)dx :.:J

oMg

Y, gym Sy .
0

If we transform this by writing 2, 8,y for 8, and expanding the fluxions, we shall
get an expression which may be written ' '

L0, ‘

82U=[22Amsyw3ywx N (4

©© IR
where 8,y, for instance, ‘meang d/dx, &y and A,, contains 2, as well as 2 This
expression consists of terms in which 8y itself enters, and other terms in which only
its fluxions appear. Integrate hy parts the terms containing 8; thus, in the
previous expression .
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104 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND
- _ AY,, _ o
[ 8y 8y dy = [ 8y 8y — [ (2 8y 8y + Y 8 8y V) de
1
= (Yo 8y 8= = | 58y 8|
| . )

PY Ao o o o
+ j <_c_l;3g Sy Sy — % 8y 8y — Y, 8 8y 1>) dac
and, finally,
1Y08

in,ﬁyBy -L:l:j(QdY‘”Sy --8y< 8y+&c>)dw,

where, with the exception of the term involving &y the integral involves only
fluxions of 8y, and a similar reduction can, of course, be applied to any terms of the
same form.

Reducing all the terms involving 8,7 in (7), we get for 8°U an expression which we
may write

$U =L+ (AO S,° + S SA, 8,0 Sly(")> dz,
[CON¢Y)

where, in the terms under the double summation sign, 8,y only appears through its
quxions. If we determine z, by the equation Aj= 0, a differential equation of the
2n™ order, we have &U depending on the limits and on terms involving 8,y only

through its fluxions. If this expression be transformed by writing 2, 8yy for 81y', then,
after expanding, we get an expression which we may write
' (n=1) (a—
82U=L+j p EB By(r)Sy(s)dx

© ©

in which the highest fluxion of 8,y is of the (n—1)% order.
This expression can be reduced by the same method, and we get

PU =L+ | <B S+ 3 3B, 82y(“’)> d.
O @

Determine z, so that B, = 0 for all values of #, then 8*U will depend on L and the
fluxions of 8,y : transform this by writing, in the part under the integral sign,
8,y = 25 85y, and reduce in the same way, and so on till we come to the last trans-
formation but one, in which

$U=L+ | (MO Gusy)® + > S M, 8,y S,L__ly@) dz,
W
which, treated similarly, gives
U =L+ (N, 8,4* 4+ Ny, 8,90 do ;-
and, determining z, so that N, = 0, we get finally
8U =L + [Ny, (8,9)* da.
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MINIMA SOLUTIONS IN THE CALCULUS OF VARIATIONS. 105

When we substitute for 8”5/ its value in terms of 8y and its fluxions, we must clearly
have an expression of the form

U = L4 [Ny { /; (%) 8™ + £, () 8y~ + &e. + f, () Sy} der ;

and, as it is evident that the coefficient of 8y™? is unaltered by the transformations,
the expression for 8°U may be written in the form

L4 [Y. (Sy(h) + oy 8y Y + &e. + «, 8y)?* d,

where L contains 8y and its fluxions up to, but not including, 8y

10. This is the same form as that in JAcoBr'S method, and it has been obtained on
the supposition that integrations may be performed on &y, 8y, . . . 8y™; this requires
that 8y ... 8y»? should be continuous in every sense, and that 8y® should not
become infinite, but it may suddenly change from one finite value to another. It is
very important to note this in connection with the condition determining the point at
which a curve ceases to fulfil the synclastic condition.

As yet, the equations determining the quantities 2, #,, ... 2, used in the trans-
formation have not been given, and it might be supposed that they would have to be
found in order to determine the part of 8*U depending on the limits. It will,
however, be seen that in this as well as in every other case under the Calculus of
Variations it is only necessary to use these quantities to show that the reduction can
be made. As a matter of interest, however, a short discussion is given below.*

* It may be interesting, though not required for our immediate purpose, to examine the relation
which the coefficients #;, &c., in the transformation bear to the value for y which gives the synclastic
value to the integral. For this purpose it will be convenient to use A 6U instead of &°U.

In the first place, it is evident that, if we have any expression for &?U as a quadratic function of &y
and its fluxions, we shall get sAU by taking the polar, with respect to the quadratic function, of the
point whose coordinates are Ay, Ay, Ay, and so on, using the word * point” in an extended sense. If a
proof of this is desired, write (8§ + KA) for & in

&U = f (3, oy, . . . y»),
and get

(0+KAPU=7{(6+KA)y, (5+KA)y...(5+Ka)y},

and, after expanding, equate coefficients of K, which is quite arbitrary. Hence, from equation (7) we
obtain

ASU=L+ jz 3 Ay Ay byt das
11

and, since the integral contains only fluxions of A%, AU will depend only on the limits, whatever be
the form of &y, provided Ay, that is, Ay/z, is constant; and therefore 71 is one of the values of Ay for
which A éU is independent of the form of §U. Now,

SU=T+ [(YC _Nl L@ IY; &c.) oy da,
MDCCCLXXXVII.—A., P
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106 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

11. Tt is important to observe that this transformation is only valid, provided none
of the quantities 2z, 2y, ...2, used in the transformation vanish for any value
of x passed through in going from w, to ;. For, suppose 2z vanishes, then, as
8,_1y = 2,8, y, the corresponding value of 8,y must be infinite. Now, sincez, . . . 2,

and therefore

A5U=L+jA(Y0—‘%1+ . .)Sydm;
and this can only be independent of the form of &y when
A(YO—%+...)=0, L (@
that is to say, when y 4+ Ay satisfies the equation satisfied by v, i.c.,
Y(;-‘%u&c..—.o.. N )

If, then, the solution of () be y = f (2, ¢}, ¢, . . « ¢3,), that of (a) is obtained in the well-known form (see
TopHUNTER, ¢ History of the Calculus of Variations,” p. 271, or Jrrrerrt, ¢ Calculus of Variations,” p. 84)—

ar af af
Ay = 2_A A P =< e e e e e e
¢ de, o+t de, Acy + + deg, Al ©

It follows that » must be C,df/de; + Cydf/dec, + &c., or, shortly, 2 =15 ¥y, ¥as - - - Ygu being indepen-
dent solutions of (c).

In finding 2, we employ a similar process. Since the part of U under the integral sign has been
expressed in terms of the fluztons of &y, that of AU can be expressed in terms of the fluxions of &gy
and Agy. Hence, if we choose Ay, so that Ay = constant, the integral vanishes identically, and the
whole variation A 8U depends only on limiting values of 8y, and not on the general value. Hence, as
before, Ay must be a solution of (), and evidently it must not be the 7, solution. Let us denote it by
1, (observing that v,, however, cannot be quite arbitrarily chosen from the remaining 2n — 1 solutions
because the equation for Ay is only of the (2n—2)% order, and can only-have 2n — 2 solutions). Then,
since z,= Ay /Ay = 1/Ayy . a/dz (Ay/z,), it easily follows that z,= cd/dw (ygly,). Similarly, when we
come to the third transformation, we have #Amy = Ay, whence

. 2 _A._y)‘

_Ay_ 1 d)dely,
T Ay Ayda i(yz)
...dm yl —

and, when Ay = constant, Ay is a solution y; of (a). Hence,

_.h% gz’)_
d | do\y,

(AN T
and similarly for the remainder. As nothing hangs on the discussion of these quantities, it is not worth
writing out any more. In fact, the only application of the investigation to the present case would be to
show that the transformations in Art. 9 are always possible, provided a sufficiently short length of the curve
be taken ; that is, to show that it is always possible to choose z, 2,, 23, &c., so that none of them vanish
for any value of # between the limits of integration. But it is easier to see that this is, in general, the
case from the equations obtained for z, #y, 2, &c., in the course of the transformations themselves. For,
% being a function of # and arbitrary constants, it follows that, if we put z,= 0, we can solve for the
value of » in terms of those arbitrary constants, and hence, by taking suitable values for the constants,

we can, in general, ensure that z, does not vanish for a value 2 =z,
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are definite functions of x and the arbitrary constants introduced in the solution, it is
evident that, x, being the initial value of (), there will in general be some value ,
at which it becomes impossible to determine the arbitrary constants, so that some one
at least of the solutions #; . . . %, shall not have ¢hanged sign. Up to this point the
transformation must hold, and the conditions for synclasticism derived from it must
be sufficient and necessary.

12. Confining our attention to integrals for which the transformation does hold
(that is, integrals whose limits are not too widely separated), it is easy to see by the
usual method that, unless Y,,dx retains the same sign throughout the integration, the
integral cannot be synclastic.* For the integral

87U = [Y 0 (Sy+ o Sy - &c.)? dac

may then be divided into two parts, one negative and the other positive, and, as the
form of 8y is arbitrary, we could mike the numerical value of either of these parts
exceed that of the other, and therefore 8°U would be capable of either sign.

But the condition that Y,,dz remains of the same sign throughout the integration
is not sufficient to ensure that this integral shall be synclastic. This would be the
proper place to examine the further condition if it could be derived from the preceding
transformation, but it does not appear to me that we can avail ourselves of the
analysis, for the following reasons :—Some of the quantities # used in the tranforma-
tion may vanish for some value of @ included in the integration, and the investigation
would not apply. Hence we should have to give an independent discussion to
discover the limits of the integration within which the transformation does apply.
But even then we should only have proved that the function was synclastic up to
those limits at least, and we should have still to discover whether it might not be

* It is usually stated that, unless Y,, preserves its sign, the integral could not be synclastic; but

this is a mistake arising from the supposition that, because dz increases from the lower to the higher
limit, it must have the same sign throughout the integration. But it is evident from the figure

that do may change sign for a value of @ befween the ¥imits, in which case there must be an even number
of chaunges, or it may change sign an uneven number of times for values not numerically between the
lower and higher limit, but yet passed through in going from the one to the other vid the curve. It
would be easy, by transforming the axes, to multiply examples of the latter, and in these Y, and da will
change sign together,

P2
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108 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

synclastic for wider limits. For it does not seem by any means evident that the
function cannot be synclastic unless the transformation is valid. It might still be
possible to reduce it to a sum of several squares, for instance, after it had ceased to be
possible to reduce it to a single square term. At first sight this would appear not
improbable, for it would mean that it was still possible to determine the first few
coeficients, #), 2y, . . . . %, &c., so that none of them vanished, although it was impos-
sible to determine z,,; so that it did not vanish ; then the integral would be reduced
to the sum of (n—7) squares, and the conditions would be that all their coefficients
were positive.

These difficulties seemed so great that it appeared better to attempt the problem
by an altogether different method, namely, that of supposing that the synclastic
property does hold for a given length of the curve and then ascertaining where the
property ceases to hold.

Tt is evident that if this could be done it would be sufficient to find the synclastic
condition for an infinitely small range of integration, and this suggested the method
now to be given. As already stated, the discussion of the further condition for
synclasticism will be postponed to Art. 21.

Parr 11.
The General Method.

13. A full account will now be given of the general investigation as applied to the
case of two variables, and a somewhat shorter discussion of the general case will be
found in Arts. 20, 21.

Consider the conditions under which the equation

J’:xf(w’ Y + Sy, :I./ -+ Sy.’ e y(n) + Sy(u)) dx = j-:f (w’ Y, y.’ . y(n)) dx

+ [ (Ty+Go+.. .+ d;;) By de

+lj (le z+2 f8y8_/+ fS 2+ +d;lz{:)28y(n)2>dm

+ota (‘%3 3+3dy{i 5y 3/—{- F dJ({;symB)czH&c
is valid. It is obtained by ;Writing y + oy, y+8y...fory,y...inf (, Uy .. oy,
expanding by TavrLor’s Theorem and then integrating. TAYLORS Theorem requires
that numerical values of the quantities 8y, 8y, &c., shall not exceed certain limits, and
that the values of =, v, 3}, &c., shall not be such as to make the coefficients in the
expansion infinite. Hence, if f(z, ¥, Y . .. y") satisfy the latter condition for every

value of 2 included in the range of integration, and if we take 8y, Sy, &c., small
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enough, we can always ensure that the above expansion holds. So far, nothing has

been said as to the continuity of 8y, 8y, &c., but, 8y, &e., being the successive fluxions
of a single quantity 8y, they must all be continuous functions of = except 8y®, the
highest fluxion, whose magnitude is not so restricted. For, if 8y changes suddenly
from one finite value to another, for change of = from &’ to &’ + du, its differential
coefficient, &y, would become infinite for that value of =. But, as 8y»+V does not

occur in f(z, y, ¥ . . . y®), the validity of the expansion will not be affected by its
becoming infinite, and therefore 8y* may change from one finite value to another.

14. Hence, if we discuss the problem of maxima and minima by the usual method,
the variation we give is of necessity restricted as follows : 8y, 8y,. . . &y* Y must all be
continuous functions of «. 8y™ need not be continuous, but the magnitude of each
fluxion must be restricted with certain limits, which will vary with the nature of the
problem under discussion, but it will in all cases be sufficient to make them infinitely
small. It will be convenient to consider 8y as agz, where a is a small numerical
coefficient, and ¢ is a function of x, such that it and any number of its fluxions may
become zero, though in general they will be finite, while neither the function itself nor
any of its fluxions up to and including the n* can become infinite for any value of
occurring in the integration.

The coefficient « must be taken sufficiently small to ensure that, when considering
only the sign and not the value of an expression involving it, we may neglect terms
depending on o? or higher powers in comparison with those depending on «. Denoting,
as usual, by U, &U, &c., the part of the expansion depending on the first, second,
&c., powers of 8y and its fluxions, we may say that 8U is of the order «, 8°U
of the order ? and so on. Hence, in the absence of special determinations of the
form of 8y, 8*U, the part depending on a® will exceed all terms depending on «® and
higher powers of a, and then the sign of the whole variation will be the same as that
of 8*U (8U being zero when ¥ has its synclastic value).

It is convenient to have a geometric representation, and the function y will be
taken as the ordinate of a curve of which x is the abscissa, and the curve corre-
sponding to the synclastic form for y will be called the synclastic curve.

15. We may now easily prove the following proposition :—

Let 2y .
U =I fey,y. ..y de,

y being any function of . Let the second variation §°U be taken, subject to the
condition that 8y, 8y, . .. 8y»~ are zero at each limit. Then the sign of &U is the
same as that of the term involving &y™? in the integral, provided the range of the
integration be sufficiently small.

The second variation being written

SU = | (Yoo 89 + 2, 8y 8y + Y1, 82 + &c. + 2Y,y, Sy 8y + Y, 8y*?) d,
Y 1,4 OY Y !

Ly
o
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110 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

the proposition will be proved when it is shown that throughout the integration
Sy®=V /8y, Sy»=2/§y»~V, &ec., are all negligible, for then the term Y,,8y"? is
obviously the most important.

Now "
8.7/.(:—1) — J' Sy(/t) dw,

no constant being added, as 8y*~Y vanishes when = x;,. Let the numerically greatest
value of = — &, in the integration be B, and that of 6y™ be y; then, numerically,
Sy < By. '

4 fortiori, 8y* P < B%, for, if B> be the greatest value of Sy»~V, Sy*» < BR.
But 8’ < By; similarly 8y“~® < 8%, and so on. Hence 8y» P/8y" is of the order B,
and similarly for each of the fractions.*

It follows from this that the only term of the order «? in the expression for 8*U is

Xy
R
o

It follows that, if Y,, dx does not change sign in passing from z, to x;, neither can
8°U change sign, whatever be the form of 8y, and it is clear that §U/U is of the
order o? exactly as if the integral were taken over a finite portion of the curve;
and it should be remarked that the value of &*U is of exactly the same order as
if the limiting variations 8y . . . 8y*~V had not been zero—that is, the order of 82U
is the same as if the most general variation possible had been given to v, although
the actual variation is zero, as also are all its fluxions up to, but not including, the n',

" It might possibly be objected that, as 8%~ is zero at each limit, therefore rlSy(”) dx

is also zero. Hence, as dx may be taken to increase uniformly, Sy must change sign
between « = x, and « = x, ; and, as these values are very close, 8y is everywhere very
near its vanishing point, and is thereforc everywhere very small. But this proceeds
on the idea that 8y® must be continuous. There is no difficulty when it is remem-
bered that 8y™ may change suddenly from a positive value to a negative value.

16. Thus, without any analytical transformations, it has been shown that if Y,, be
positive the integral is a true minimum, and if Y,, be negative it is a true maximum
when the integration is extended over a very small range. We have still to consider
how far the integration may be extended without annulling this property. With-
drawing the restriction that x, — wx, is small, let us consider the continuity of the
second variation

) . )
82U = J’ (YOO Syz + 2Y'Ol 89 8?/ + &C. + Y;m 8?/(”)2) d{l}.
&,
* It follows similarly that, provided 3, the range of the integration, be not too great, the sign of &'U

&

is the same as that of rl (dPf]éy ™3 &y 3) die, that of ¢*U the same as that of j‘ ld"jf/dy(’”* (8y")* dw, and
Xy Ly

so on; and this docs not in any way depend on y having its synclastic value.
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Tt is, in general, a quantity of the order «® (Art. 14), and it is continuous if we can
alter it by amounts infinitely small compared to «® This is always possible. First
let the limiting values of = be unchanged ; then, writing, for 8y, 8y + &%, where &% is
infinitely small compared to 8y or e, it is evident that the change in the integral is
infinitely small compared to e. If; still keeping the same variation 8y 4 8%, we change
the limits by writing =, + day, @, + dx,, for #, and z,, the most important additional
terms due to this change,

((YOO 8?/2 + 2-YOl 89 81/ + coe e + sz 8?/(")2) dx__Jl’
0

ave also infinitely small compared to the original integral.

Now, as in the original expression for 6°U we may suppose &y, 8, . . . Sy~ zero
at each limit @, and =z, so we may suppose &% so determined that Sy + &%,
&y + 8%, . . . 8y»=Y 4 8%, shall be zero for the values w, + da,, z; + da,.

Hence, representing by 82U, the value of the second variation when the value of
8y is such that it and all its fluxions, up to the ™, vanish for both limits of integra-
tion z, and «,, we see that we can always alter the value of 8y so that

80U iy — 802
U,
is infinitely small. (Of course we might also alter it so that it should be finite.)
It will simplify the further explanation if we represent the values of y by ordinates

of a curve of which z is the abscissa,* and we will suppose that the value of Y,, at
the lower limit is negative, so that the curve obtained by making 8U vanish is a

maximum when the upper limit is very near the lower one.

Considering the Jower limit of integration z, as a fixed point A, and the higher one
@, as an arbitrary point M, on the curve ABC, we know from § 15 that when M is
sufficiently close to «; the integral is a maximum, .., 8U, /(x;—=,) is a negative
quantity of the order «®. Suppose the curve first ceases to give a maximum when M
coincides with C. Then we may easily see that C is the point to which it first

* It is evident that what has been said about the admissibility of a variation may be expressed thus:
&y is the difference between the ordinates of the new curve and old curve, and any curve is admissible,
provided &y” is nowhere infinite. Thus the broken curve ABC is admissible provided that at D and E,

the points of junction with AFC, it has contact of the (n — 2)® order. Furthermore, the difference of the
integrals taken along ABC and AFC is the same as the difference of the integrals along DBE and DFE,
as is seen at once by regarding the sign of integration as one of summation.
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becomes possible to draw a second curve such that U =0. For, if $2U} could be a

posttive quantity of the order o?, we could alter 8y so that $U; should be positive
and of the same order, C’ being between A and C, infinitely near C. Hence the

maximum property would have ceased at C’, but by supposition it does not cease till
C, and therefore we have to find C as being the first point for which 82Ui or
80, = 0.

Now $UL =0, 1st, because it vanishes 1ndependently of the form of 8y, or
“2nd, because a particular form is assigned to &y, causing it to vanish, or 3rd, because -
x; — %, can be divided into separate parts, some of which vanish from the first cause
and the rest from the others. /

The first case can only occur if 8*U vanishes identically, z.e., if its coefficients
vanish, and will not be further dlscqued The second case will occur when Y,,,, does

not vanish between A and the point for which 82UA 0 (this will be evident
presently). The third case must be investigated on the supposition that the parts
which vanish independently of the form of 8y are infinitely small (for otherwise
8°U would vanish identically), and for these parts Y,, must vanish, for when the

limits of integration are infinitely close, and the limiting values of 8y, &y, . .. Sy»=b
zero, 8U = [Y,,8y"? dx, and this vanishes independently of the form of 8§y when
Y,.=0.

We have then only two cases to discuss—(a) Y,, does not vanish throughout the

integration, so that 8°U} vanishes in consequence of a particular form being assigned
to 8y throughout the integration, and (b) that in which Y,, does vanish.

First suppose that Y,, does not vanish. Then C is evidently determined at the
first point to which a second synclastic curve can be drawn, having at each limit
contact: of the (n — 2)® order with ABC.* -

* Forit is evident that if 6*U vanishes in passing from ABC to ADC, and if any portion as EF of ADC
were not itself synclastic, we could obtain-an integral greater than that along ADC, and therefore greater
than that along ABC, by joining EF by a synclastic curve EHF, having at E and F contact of the
(n — 2)® order with ADC; and therefore the preceding reasoning shows that C would not be the first
point at which a curve can be drawn so that 8*U; = 0. Hence we must use the synclastic curve to get
this limit.
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Next suppose that, in fig. 4, the point S represents the first intersection of a
consecutive synclastic curve AB’S with ABS, and that the dotted line, through T, is
a line whose equation is « = «/, &’ being the value of % for which Y,, = 0 (if there is
more than one value, take the first one you pass through in going from A wid the
curve). Then, in that figure, U] first becomes capable of the value zero at C, where
the curve meets the ordinate through T. For the second variation vanishes in passing
from ABC to a curve ABC'C coincident with ABC up to C’, a point infinitely close
to C, and having at C and C’ contact of the (n — 2)™ order with ABC, since from A
to C’ 8y is zero, and from C to C'Y,, is zero. ‘

Hence 82U§ first becomes capable of a zero value when C coincides with the inter-
section (S) of a consecutive synclastic curve having contact of the (n—1)* order with
ABC, or with the point (T), given by Y,, = 0, whichever s first reached in passing
from A along the curve.

Tt follows, rigorously, that the synclastic property cannot cease wnti} the first of
these points is reached. It does not follow that, if the integration is extended
beyond this limit, the integral is anticlastic.

Three cases arise :—1st, S is nearer A than T is; or, 2nd, T is nearer to A than S;
or, 3rd, T and S coincide.

Case 1.—In this case we can easily show (see fig. 3) that, C being the intersection
of a consecutive synclastic curve ADC with ABCG, the synclastic property does
cease at C, that is, we can join A and G by curves the integral along which
is either greater or less than that along ABCG. Let ADC be a consecutive
synclastic curve for which $*U; = 0, then evidently, representing by I (ABC. ..)

the integral along the curve ABC . . ., we have
I(ABC)=1I(ADC);
add
‘ I(CG) =1(CG),
and get

I (ABCG) =I(ADCG)
MDCCCLXXXVII.—A. Q
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(which is legitimate, as 8y* is nowhere infinite). Now take two points P and Q on
ADC and CG respectively, and join them by a synclastic curve PRQ having contact
of the (n—2)" order with ADC and CG, P and Q being sufficiently close for the
synclastic property to hold between them. Then, since I (PRQ) is a maximum,

L(PRQ) > T (PCQ);
L(ADP) +1(QG) = 1(ADP) +1(QG),
T(APRQG) > I(ADCG), and therefore >I(ABCG),

add

and get

showing that the integral taken along ABCG is not a maximum, and evidently it is
not a minimum, for, if’ it were, every part of it would have to be a minimum, and the
part from A to B, for instance, is not a minimum, but a maximum.*

Case 2.—In this case, if Y,, changes sign as well as vanishes, the integral becomes
anticlastic when the limit is beyond T (the point where Y,, = 0). This is obvious, as
the part immediately beyond T then gives a minimum value to the integral whose lower
limit is T, while from A to T it gives a maximum value. If Y,, does not change sign,
it is easy to see that the maximum property does hold beyond C, with this nominal
exception. A curve ABC'C"C”’G can be found 'the integral along which is equal
to that along ABCQ, C’" and C” being infinitely near C, and C'C”"C" being any curve
having contact of the (n—1)" order with ABCG at C’" and C'”. It is not difficult to
see this by reasoning similar to the above, but it is shorter to observe that if we alter
very slightly the value of Y,,, so as just to make it preserve its sign without vanishing,
we alter the value of the integral very slightly, and, therefore, &c.

Case 8.—Very slight consideration shows that the synclastic property ceases at T.

17. Before passing to the general case, it will not be amiss to add a few explanations.

The argument is not that it is possible to pass from the original curve to any
other infinitely near curve by repeating again and again for each part of the curve a

* Tt is sometimes considered sufficient to say that, as BUi =0, and 62U§ =0, while 83Ui changes sign
with 8y, the maximum property must cease ab A. In TopEUNTER’S ““ ADAMS' Prize HEssay on the Calculus
of Variations” this reasoning is employed (Art. 24, p. 25). But it is invalid for two reasons. 1Ist, U
and all higher variations may vanish, as in the case of great circles on a sphere; and 2nd, it shows only
that a curve can be got giving an integral greater than that corresponding to ABCG by terms of the
third, not of the second, order. Now, as the second and third variations are quite independent of each
other, there is nothing whatever to show that when a value is given to 6y other than that which makes
8*U = 0 this variation 8°U can be made to change sign. It is absolutely necessary to show this, for
otherwise the integral from A to G would really be a true maximum, though of a very curious nature.
—See the remarks at the end of Art. 17.
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variation such as we have just given. No doubt, if we were to do this, we should at
last get a curve differing from the original one, and, since Y,, is the same if x be the
same, it seems that we should get the variations all of the same sign, and that the
result could thus at once be extended to a finite length of the curve; but, although it
would be true that the sign of the second variation in passing from any one of the
curves thus found to the consecutive one would have the same sign as Y,, dx, yet the
Jirst variation would not vanish.

It is not difficult to see that these two alternative conditions, treated of in Cases
1 and 2 respectively, are independent. For, if the points obtained by the two criteria
coincided, the least root of the determinant equation (¢) in the note® must coincide
with the least value of « for which Y,, = 0, and it seems evident that there can be
no such connection. It may, however, be as well to give an example, to show that
the condition in Case 2 may cease to be fulfilled, while that in Case 1 still holds.
Taking for U the expression [ *a dw, we have

8T =48y g do =45 8y), — ¢ | < () 8y da,
and the equation given by the calculus is

d -,
¥ =0
integrating, we get
y = ca®® 4 ¢,
whence it is easy to see that Y,, dx or 43y% dx changes sign as x passes through
the value zero. (It might be thought sufficient to say that, as »* cannot change sign,

*If y=f(w, ¢ Cy .« . 0u) be the general solution obtained by making

_dY, | &Y, Y,
0T gt T de 20
then, denoting df/de,;, df/de,, &c., by yq, yg, &c., it is well known that we have for the value of =, to

which a second curve of the species can be drawn from a,, so as to have, at 4, and the point we seek,

contact of the (n — 2)™ order with the curve y = f (@, ¢}, ¢,, . . . ¢40), the equation
! ! r
Y1 Yo e e e e Yo
Y1 Yo oo o o o0 Yo r
. -
- — ’ -
y’](n 1)’ y’2(7z 1), L. ym(n 1) -0
=0, (@)
Y15 Yo e e e e Yo
Y Y9 -« o Ym
.9 T 9
yl(n—-ll’ yz(n—l)’ .. ym(n-—l)

where y' means the value of y when @, is substituted for z. The least value of # satisfying this, or more
properly the value first reached in going from #, vid the curve, gives the point in question.

Q 2
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this quantity must change sign with x, as d is a constant quantity ; this, however,
is a mistake : it is necessary to know the nature of the curve in order to be sure that
dax does not change sign when @ does.) Hence, according to the first rule, the integral
will be anticlastic, should the value =0 be included in the limits of integration.
But, if we seek the limits within which the condition in the second proposition is
fulfilled, we find that, if we start from a point x, = — «, a second curve of the same
species does not intersect the original curve until = 4 . It follows that, so far as
regards the second condition, the integration might extend from x; = — a to x, =+ a.
It may be well to observe that the proof given in Case 1, that when the integration
is extended beyond the limits stated, i.e., those for which 8°U can vanish, the syn-
clastic property ceases to hold, does not in any way depend on the supposition that
U does not vanish. It is shown absolutely, and without exception, that when the
limit stated is passed, 8*U can change its sign (§ 16), and the values of &°U, 8*U, for.
those limits will only enable us to find whether the synclastic property holds at the
limit up to which it is known to hold, namely, whether it holds up to and encluding

the limits found in Prop. 2. Consider the case of a curve, and let ACB and AC'B be
two consecutive curves satisfying the limits and the differential equation

ay. dary,
Yo =+ g — &eos

then both the first and second variations, §U and 8*U, vanish in passing from the curve
ACB to AC'B. But the third variation, in passing from A to B, will not, in general,
vanish, and may be expressed as a function of the coordinate of A, = f(x), suppose ;
now, as A moves along the curve, f(x) will, in general, vanish at one or more points.
Hence it follows that, in general, the synclastic property only holds between A and B,
and does not hold for the limits A and B actually, though there the difference is only
of the third order; but there may be certain points for which 6°U vanishes and 8*U
is of the same sign as Y, dx, and for these the curve joining A and B gives a truly
synclastic value to the integral.

If the synclastic property ceases because Y,, changes sign, it will hold up to (and
including) the limit, and only cease as you pass beyond the limit.

18. It is often convenient to borrow a few terms from geometry when treating of
functions depending on a number of independent variables @, @y, . ..., In the
following paragraphs the word ¢ point” will be used to denote any single set of values
of the independent variables, while “region” will mean a continuous collection of
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points whose boundary is defined by those values of «; . . .. @, which make a certain
function or functions vanish ; as, for instance, all those sets of values which satisfy the
two sets of inequalities

o+ .. Fat,— <0
and '
(@, — )’ + (g — a4+ . . . + (Xw—an) —r?<O0.
The dependent variables being %, . ...y, the word “surface” will be used as an

abbreviation for the term “set of equations expressing the dependent variables in
terms of the independent ones.” Not only is there much saving in labour, both to
the writer and to the reader, in the adoption of these terms, but there is the
additional advantage that the same explanation is applicable alike to the most
general case and to that in which geometrical conceptions enable the argument to be
grasped with a clearness unattainable in reasoning of a purely analytic character.
The reason for adopting the word “ surface” instead of “curve” is that, as the expla-
nation for the curve has been already given, it would be superfluous to repeat it,
while it seems a real advantage to give the investigation for the case of one dependent
and two independent variables.

It will be necessary, in the first place, to examine the conditions under which the
solution supplied by the rules of the Calculus of Variations is applicable.

Let the function to be made a minimum be

U=|dx,...[de.f(x, ... %w Yo+ - Yu),

where f(2, . .+ %u, ¥y, . . . ¥,) includes the fluxions of ¥, . .. v, with regard to the
independent variables.

Tofind the variation in this expression, let us increase ¥y, ¥y, . . . ¥, to y;+hy,
Yoths + « « Yut-hy (B, &e., being functions of , @, . . . x,); then the fluxions of
vy, &e., will be increased by the corresponding fluxions of 4,, &e.

For the purpose of ascertaining the limits within which the quantities A, Ay, &c.,
must be confined in order that our reasoning may be valid, let us write, in place of
hy, by, &e., aly,, aAy,, &c., where o is a constant, the same for all the variables, and
Ay, Ay,, &c., are finite functions of a, «,, . . . x,, or, more accurately, are functions
which, though they (and their fluxions contained in the integrals) may vanish, neither
become infinite, nor give infinite values to these fluxions, for values of the independent
variables included in the region of integration ; they are not-vnfinite functions. If we
represent by z, 2/, &c., any of the dependent variables or their fluxions, we may
represent the corresponding change by aAz, aAz’. By Tavror’s theorem we may
write the new value of U corresponding to the new values for the dependent
variables in the form

Uy =0+ [ [{o3 (T ae) 2oz (7 eae ) 4 § (8) oy dee 9)
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118 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

For our purposes it will be necessary to take o of such a magnitude that the part
depending on o is greater than all the subsequent terms. (It seems well to observe
that this does not, in general, imply that o is infinitely small.) But there are restric-
tions to the values of the quantities Az, A7, &c., and in order to find them it will be
necessary to give an outline of the method which is usually employed in the calculus.
The part of (8) depending on the first power of « is reduced by successive integra-
tion by parts, so that the part of the integral not solely depending on the limiting
values contains only the wvarlations Ay, Ay,, &c., and does not contain their fluxions.
Thus, if D represent the operation by which z is got from y,* we shall get from the
term

o (L acde,. .. da,

guch terms as

cof.. .. [(Bydeyday . . . dz,+ Byda, das . . . dx, + &e.)

saf o [[D(L)]der- . don

where the first part of the right-hand side depends only on limiting values. Applying
similar reductions to all terms containing fluxtons of variations, we get an expression
of the form

SU=uaf...[{Ldedx,...ds,+ Lydeda,... dwm+&c.}} )

doaf. . J{A Ay 4 Ay Ay, + &e} day day . . L da,

This integration by parts depends for its validity on the supposition that no one of
the quantities Az becomes infinite for any values of @, . .. x, within the limits of
integration. But it is very important to remark that the integration is legitimate,
whether the variations of the Zighest fluxions are or are not discontinuous in the
sense of suddenly changing from one finite (properly, not-infinite) value to another.
It is to be observed that, in discussing the sign of 8*U, we introduce no limitations
except those already implied in the usual treatment of SU.

Again, it is to be observed that the terms in the limiting integrals in (9) will
contain the limiting values of all but the highest fluxions of the variations. Hence,
when we say that the limits are given, we mean that the values of the dependent
variables and of all but their highest fluxions are given for all points on the boundary
of the region of integration. Hence, if we determine the forms of the functions
Y1 . . . Ya SO as to satisfy the equations— '

dBy . B
Thus, when # represents ms, D will represent To da daf
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_df 4 df 4 _df e )
1 = dyl —_ dxld ‘1?[1 dx2 p d_?/l\ &C. + &C. =0
dz, ' dxg)
ar d df
A= 9 =0
T dyy  day (T '
d(dxl L, . . L (10)
= . . . .. =0 |
4 _ 4 _d -
A.” = d:?/n dml d % &C. . . . . . . > — O
dm,
o

and at the same time fulfil the conditions supplied by the given limiting values of the
dependent variables and of all but their highest fluxions, the difference between the
integrals for the surface so determined and that for any other surface will vanish so
far as regards terms involving only the first power of a, provided only that the second
surface can be obtained from the first by a change such that none of the A variations
for A become infinite when x,, ... x, have the values corresponding to any point
within the region of integration. This, indeed, is true whatever be the order of «,
but, in order that the sign of the difference between the integrals shall be the same as
that of the second variation (the part depending on «?), it is, in general, necessary
that the quantities « Az, a A%, &c., be small,

19. To determine whether the integral is a true maximum or minimum, we have
now only to find whether the terms of this order «® in (8) will be always of
the same sign when the variations are given in any values consistent with the
conditions given in Art. 18. For it is evident that, if we restrict ourselves to a less
general variation in examining the sign of the second variation, we could neither
be sure that the conditions obtained were sufficient to ensure that the integral
was synclastic, though they would be necessary ; nor that the conditions that it
should be anticlastic were necessary, though they would be sufficient. If, on the
other hand, we were to admit a more general variation, the conditions for synclasticism
would be sufficient, but not necessary, and those for anticlasticism would be neither
sufficient nor necessary. In fact, it will be found that the conditions under which we
are discussing the problem are really those necessary in order that it shall have a

meaning. For instance, in the case of least action, when we say that the action in
the free path is less than in any other, we imply that there is to be no sudden change
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120 MR. E. P. CULVERWELL ON DISCRIMINATION OF MAXIMA AND

in the value of v, .such as would occur in a path AC...DB, but there may be
sudden changes in ¥, the inclination of the tangent (as in AEFB).

20. To facilitate the discussion, a fluxion will be said to be one of the “ highest
fluxions ” when no fluxions of that fluxion appear in the function whose integral is to
be made synclastic. Thus, d?y,/dx, dx, may be one of the “highest” fluxions, although
d"y/dx" is not ; for there may be no terms which can be written D . d?y/dwx, da,, where
D represents any combination of d/dx, d/dwx, &c., while there might be a term
d/dx,, d'y/dex)".

The limits being supposed fixed, the following proposition can be easily proved :
—If the highest fluxions of the variable ¥, which occur in U be all of the same order
ny, those of y, of the same order n, and so on, then the conditions that U shall be
synclastic when the integral is only extended over a small region R are the same as
those that the quantity

72
(%;th_de%-y& +2--~

2 T XY + . ) di, dacy . . . da,

doy db

shall be incapable of a change of sign, a, b, &c., representing the highest fluxions, and
X, Y, &c., being any arbitrary quantities.

The conditions for the case where the highest fluxions of any dependent variable
are not all of the same order will be discussed afterwards. When it is said that the
region R of integration is small it is meant that the greatest ranges of value of the
coordinates x, . . . @, are small. Thus, if the region is given by

2+ a4 .. Fa—1rP <0,

then » must be small ; of the order B, suppose. This being so, it is easy to show that
we may neglect the variations of all but the highest fluxions of the dependent variables
when finding the sign of 8°U. For the change in Az in passing from a point P; on
the boundary of R to any point P within it is

(A2)p — (A2)s, = j’;d po= | O<‘iAf da, + 2 eyt &o>

and, since the total range of dxy, . .. dw,, in the integration is of order 3, the order of
the integral will be that of the quantities 8 dAz/dw,, B dAz/dx,, &e., or at least it cannot
be greater. Again, the limits being fixed, (Az)g, the limiting value of Az, must be zero
unless # is one of the “highest fluxions.” Hence it follows that all the other fluxions
are small (of the order 8 at least) compared to the highest; and that they can be
omitted from the integral when all we wish to determine is its sign. It is, however,
necessary to show that the entire integral does not vanish, for, as the values of all but
the highest fluxions, and therefore of the highest but one, are given for all points of
the boundary, it is evident that
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PodAz
de =0,
‘(Po dl‘l

where dAz/dx, is one of the highest fluxions, a,nd P, and P’; are two points on the
boundary for which the value of x, alone is different, those of x,, . . . x, being the
same. It follows from this that dAz/dx, must change sign once at least in passing
from P, to P/, and therefore, if it varied continuously, must everywhere be infinitely
small. Since, however, there is nothing to prevent d/dx, olAz/dxl, being infinite (§ 18),
dAz/dx, may have a finite value within the region.

Remembering that the region is small, and that the order of mcxgnltude of Aa, AD,
&e., a, b, &c., being ““ highest fluxions,” does not depend in any way on that of the
region of integration, we see that the sign of 8°U will be the same as that of

‘(' f<d€62 (A )2+2d .gb Aa Ab) + &c>dml, dxg, o e dxm, . . . (]_1)

Aa and Ab representing highest variations. As the region is small, d*%/da?, d%/da db, &c.,
may be considered as constants throughout the integration, a supposition which again
involves neglect of small terms. (Aaq, Ab, &c., cannot be regarded as constants, however
small the region may be, for their differential coefficients may be infinite.) Now, the
part inside the bracket can be resolved into a sum of squares, and, if the coefficient
of any one (or more) of these squares is negative, the expression can be given either
sign. For, although the quantities Aa, Ab, &c., are not independent of each other to
the extent that all the other square terms could be made to vanish, yet they are so to
the extent that any one term may be made to exceed all the others; for instance, if
the region of integration be that for which

2t a+ & ... =" =<0 or ¢ =<0,
and

z?F+x?+ &e....—1"?*=<0 or ¢ "' =<0,

7" and 1 being small quantities of the order 8, we may assume
1 ’ 77 n m "
Ay = g (K (4 )%(g, o)

and so on for the others. For these assumptions will satisfy the limiting conditions,
whatever be the forms of f}, f;, &c., which may be regarded as quite arbitrary, and
they will give finite values to the “ highest fluxions” of the dependent variables. If
we resolve the quadratic expression in (11) into a sum of squares, and substitute for

Aa, Ab, &c., their values in terms of f;, f;, &c., we shall, by solving a differential
MDCOCLXXXVIL —A. R
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equation, be able to make any one of these terms larger than the sum of the others.
It is necessary, however, to show that such an equation has at least one real solution,
and this can be done by the method of expansion in series just as it is usually done
for the case of two variables only.

Thus the criterion for a maximum or minimum value of the function has been
found when the region of integration is small. It is the same as that obtained by the
methods of transformation; but the proof now given is free from the uncertainty
which is connected with analytical proofs.

21. The criteria for the case where the region of integration has any finite
magnitude can be derived from the preceding by considerations depending on the
continuity of the integrals. Remembering that we are still treating of the case where
the limits are fixed, we may prove the following proposition :—

If it is possible to take, around every point P in a region R of finite magnitude, a
minor region (p), no matter how small, such that the integral U for that region is
synclastic, then the integral for the entire region R will be synclastic, provided the
further condition be fulfilled that it is impossible to take within the region R a second
synclastic surface V', having at all points of its limiting intersection with the first
the same values for the dependent variables and for all their fluxions, with the
exception of the highest. If it be possible to find such a surface, the integral U will
be anticlastic for the region R.

Let us consider how it could happen that 8°U became capable of either sign at
pleasure when the region of integration is extended. Let S be the region for which
this change of sign first becomes possible. Hence (restricting ourselves to the case
where the function U has a minemum value), when the integration extends over any
region wholly contained in 8, &U is positive, while, if it be extended over a region
including S, 8*U can change sign. It is clear that this can only happen if the least
value of 8%U is zero when the integration is extended over S. This may be shown
thus. The second variation being written

U = a2‘[. .. IE ¥ peavde, ... do
dzdd ! "
where Az, A7/, &c., are finite quantities, it is evidently capable of being changed by
an amount infinitely small compared to & by an infinitely small change in Az, A, &c.,
and the new values of Az can be made to satisfy limiting conditions obtained from the
previous ones by infinitely small changes. It follows hence that, if it were possible to
take such values for Az, Az, &c., that §*U should be a negative quantity of the order
o® when the integration extends over a region S - dS, greater than, but differing
infinitely little from, S, we could, by an infinitely small change in the variations,
obtain values making 8*U negative and of the order «® within the region S — dS,
which by the supposition is impossible, as within S the integration of U gives a
result which is always positive. It follows that the greatest negative value of *U


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MINIMA SOLUTIONS IN THE CALCULUS OF VARIATIONS. 123

for the region S 4 dS can only differ from zero by a quantity infinitely small compared
to &?, and therefore the least positive value of 8°U must vanish for the region S.

It has now to be proved that 8*U must be capable of a negative value of order a?
when the region of integration is extended beyond the region S. It sometimes seems
to be considered that this may be inferred from ‘the fact of 8*°U changing sign when
8*U = 0. But, as 3*U does not represent the increment of 8*U due to extending the
region of integration beyond S, this is not admissible. If we draw an imperfect
analogy from algebra, we may say that what we have to prove is that in no case does
8°U behave as if it had a square factor the value of which, after vanishing, remains of
the same sign, but that, if S be a region of integration of the character supposed in
Proposition 2, for which it is possible to make 8°U zero, then for any region including
S it is possible to make &*U take either sign, the limits being in each case supposed
fixed.

To prove this, let us suppose that u,, #, . .. ¥, represent values of the
dependent variables which make the first variation vanish. Let a Ay, a Ay, &c.,
represent, the variations for which 6°U = 0 (that is, A ,*U = 0) when the integration
is extended over 8. The limiting values of all variations, except those of the highest
fluxions, are zero. Let S’ be a region including S, and let a A ,y;, @ A 4y, &c., be varia-
tions having at all points of S the values « A ,y;, a Ay, &c., for all the variations,
and having at all points of S’ not common to it and S the values zero for all the
variations. |

Now take a third region S”, wholly included in §’, and of which a portion 3, is
included in S, and the remainder 3, excluded from S; and let a A gy, a A gy,, &ec., be a
variation having at all points of 8'— S” (representing in that way the points contained
in 8" and excluded from S”) the values a Ay, @ A gy, &c., while, over the region S,
a Agly, @ AgY,, &c., are determined by the conditions that v, + & A gy, ¥, + & A gy, &c.,
are the values which make U a true minimum when the integration extends over the
region S”, and the limiting conditions are that, for all except the highest fluxions
of the variations, Agz = A all over the boundary of 8”, z representing, as before,
any dependent variable or fluxion. (By taking the region S” small enough, these
conditions can always be satisfied.)

Then the variations represented by A, A, and A, are admissible ones (Art. 18).
Then A ,*U = 0 when the integration extends over S, and a,?U, when the integra-
tion extends over 8, is identically equal to it, and therefore vanishes (for the a,
variations are zero except over S, where they equal the A, variations). Again the
A, variations are the same as the A, ones, except over S”; and over S” the functions
Y+ aAgyy, &e., give a smaller value to the integral than do y; + a Ay, (because
they make it an absolute minimum compared to all near values), and therefore a *U
is smaller than A ,’U, the integration being extended over §. But AU = 0, and
therefore A4*U is negative. But clearly 8°U may be positive, and we have now shown
that it may be negative, for one value is a* A 5*U ; hence it is capable of either sign.

R 2
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It may be objected that exceptional cases might occur, in which Ay and Ay
coincided over S” as well as over §’—8”. But it is directed that, of S”, 3, is in the
part common to S and &', and 3, is outside S. The surface y, 4+ 2 Azy,, &e., is
therefore one in which discontinuous values for the fluxions of ¥, + a Ay, Yo + @ Ay,
&c., would appear in the equations (10), Art. 18 ; and therefore that equation cannot
be satisfied by these values. Hence A, is not the same operation as A,

Observe that the whole point of the proof consists in the fact that the A 4 variations
are sufficiently continuous, notwithstanding the discontinuity in the highest fluxions.

To complete the proof, it only remains to show that the surface V', for which U = 0,
satisfies the equations (10), Art. 18, for every point of the region S. Suppose that it did
not do so for a portion S; of S. Take a compound surface made up of V, over S, and V’
over S — S,, where V, is the synclastic surface, having at all points of the boundary of
S, the same values of Ay, A, &c., and all but their highest fluxions, as those of the
function V’. This compound surface gives us an admissible variation, and the integral
over it is less than that over V/. But, by hypothesis, it is impossible within the region
S to find a surface giving a smaller value to the integral than that given by V.
Hence V’ must be a synclastic surface, and the proposition is proved.

Hence a function will be synclastic provided, first, that the condition given in
Art. 20 is fulfilled for every point in the region of integration; and second, that
it is impossible, within that region, to draw another synclastic surface with the same
limits. It will be easily seen that these conditions are independent of each other, and
that, if either or both fail, the function becomes anticlastic. A

22. When the highest fluxions of any dependent variable are not all of the same
order of differentiation, the conditions found in Art. 20, although sufficient, are
not all necessary. For, as will be proved presently, the values of the highest fluxions
of the A variations are not all of the same order of magnitude. To ascertain the
comparative orders of different fluxions, let us consider the equations

2 — AZ da

AzZp AZp, -‘-21 o, 1
22 QA2

A — Ap, = j — di,, and so on,
2 2

where Az, means the value at the point P, or @}, z,, . . @.; Az, that at the point on
the boundary which has the same values for all the coordinates except x;, which has
the value z,” given by ¢z x, . . . @,) = 0, where ¢ =10 is the equation of the
boundary ; and similarly for the other coordinates. As x; — )/, @, — x, &e., are
everywhere of the same order, B, it might appear that d Az/dx,, d Az/dwx,, must each
be of the order az/B. This, however, is only the case when d Az/dx,, d Az/dx,, &c.,
do not rapidly change sign. For, while it is clear that d Az/dx must exceed Az in the
ratio 1/B at least, it is easily seen that the ratio may be greater if the terms in the
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integral change sign rapidly. TIn fact, if the order of dAz/dx, is unity, and its
fluctuations recur at intervals of order B, then the terms in the integral

]’xl dAz

2/ d"nl

do,

will cancel, provided @, — @, = mf3", m being any integer ; and so the integration up
to any point can only contain terms of the order 8. Moreover, since, if any function
is periodic with respect to any variable, all its fluxions with respect to that variable
are of the same period, it follows that, if one differentiation introduces a coefficient of
the order 8=, two will bring in 87, and so on.

It thus appears that, if we assume Ay, = 87, multiplied by a function whose fluc-
tuation-periods with regard to x,, a,, &c., are p;, p,, &c., the order of

dAy,

7l wi he (p=p) -
o, ill be that of B ;
d A7/2 (
b I’_J’2)
To e B

and, in general, that of datat® Ay, [dx,® duy® . . . will be Bz—ar—ar—&. Now, by the
conditions in Art. 18, none of the quantities Az, &c., can be infinite ; hence we must
reject any values of Ay, Ay,, &ec., which do not fulfil this condition. Thus the term
just considered must be rejected if it makes any of the expressions

P = Py — Ggpy — &e. — P, <0,

where a,, ay, . . . @, have the values corresponding to any fluxion occurring in U, And
it may be rejected as useless unless it makes some one, at least, of these expressions

-zero. An example will render this more intelligible. Suppose we consider a
function in which dd%,/dw8, dty,/dx?dx, dby,/de?d?, doy,/dep, are the highest
fluxions. Here the equations to be satisfied are

P=2p—=2p,=2>0 . . . (0); p=>bpy=>0 . . . (d),

together with those obtained from the lower fluxions. But, as the lower fluxions must
be smaller than the higher in the ratio 1/8 at least, it is unnecessary to consider the
conditions obtained from them. If we put p, =1, we get, from (a), p = 8, and it is
obvious that p,=1 will make (b), (¢), and (d) each >0. If we put (b)= 0 and
eliminate p from (1), (¢), and (d), we get, as our conditions from (a), p, — 5p,>0;
therefore p,>5, as p, =1; from (3), p; — p,>0, and therefore p,<1. Hence no
value for p, p,, or p can satisfy (b) =0 and the other inequalities. Hence we
may leave d*Ay/dx?dx, out of the final condition, as it could only give terms
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multiplied by positive powers of a. Similarly, if (c) =0, p = 2p, + 2p,, and from
(@) 2py — 6p, = >0, but from (d) 2p, — 3p, = >0, and, as these are incompatible for
positive values of p, and p,, d*Ay,/dx® dx,’ cannot appear in the quadratic function,
on whose sign the problem depends. For, if we make any assumption which gives to
it a finite value, we give, to other quantities in the integral, values involving negative
powers of 8. If B be infinitely small, this would imply infinite values for the A varia-
tions. But the values p =8, p, =1, p, = £, will satisfy (d) = 0, and the rest either
= or >0. Hence, in the case in question, the sign of the variation depends on
that of

—i:{h—gxz-pz df‘z/ldf Ty, XY"‘—di_%Yz} w, da
™ L ) g o

If the highest fluxions had been

O_Z?Z/I’ 2y , _d d* Y
a8 dae," daq dup da,? da?

the conditions would be, if we write p, =1 all through, p —8=>0(a);
p=T—=p,=>0(b); p—5—2p,=2>0(c); p—3p,=2>0(d). Putting p=3,
p, =1, (a) and (b)) = 0, and (¢) and (d) > 0: hence d® Ay,/dz,® and d* Ay, /dae,” diy will
remain in the condition. Putting p =29, p, =2, (b) (and (¢)) = 0, while (a) and
(d) >0 : hence d7 Ay, /dx® dx,? remains. Again, putting p, =5 and p =15, we get
(d) = 0, while (¢) = 0 and («) and (b) > 0, and hence d® Ay,/da,® appears. Hence in
this case all the fluxions remain.

To complete the proof, we must show that it is possible to assign values for the
variations Ay, Ay,, &c., which shall satisfy the limiting conditions as well as those
given above. In order to show what kind of assumption must be made, it is
necessary to remark that, if z be any quantity such that z =0, and dz/dx; = 0 all
over any surface ¢ (@, @y, . . . #,) = 0, then will every other fluxion, as dz/dx,, =0
over that surface. For, asz2=0,

0=d cl + dw2 + . (g;dxm

whenever da,, dx,, . .. dx, satisfy the equation ¢ =0, The only relation among
dax,, dwy, . . . dx, imposed by this limitation is .

d¢d L+ <l’olacz+&c =0.

Hence, comparing coefficients,
dede, _ dz/dz,
dplda, ~ dep|day

= &o. ;
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but, as dz/dz, vanishes, so do all the other fluxions. It follows that, if the boundary
conditions are Ay, =0, d/dx,.Ay, =0, d/dx,.d/dx,. Ay, =0, and so on up to
ot [de,™ day™ . Ay, all the fluxions whose order does not exceed a; + a,. .. + a,
must vanish at the boundary. For, as Ay, and dAy,/dx, = 0, so do all other first
fluxions, and therefore dAy, /dx, = 0: but this, with d/dx, . dAy,/dx,, shows that all
second fluxions with dw, in them vanish. Hence any fluxion d*Ay,/dx,dx; = 0 for
dAy,/dx, = 0 and d*Ay,/dux, dx, = 0, and hence all second fluxions of dAy,/dx, vanish,
and therefore, &ec.

It follows from the preceding that in the examples in question all fluxions up
to and including those of the 7th order must vanish for points on the boundary,
and if we assume for Ay, an algebraic form we must write

Ay, = (b (1, @y - - - 20) )P S (),

where ¢ = 0 is the equation of the bounding surface. Suppose we adapt this to the
last example, the origin being taken as the point P in Proposition 1, and the

bounding surface as
24 xt — =0,

so that the integration extends over all values of #, and x, which make the left-hand
negative. Hence 7 is to be a quantity of the order 8, and, to adapt the expression to
the preceding formula, we must write

o[ + (2o v

where, however, cos (z,/8%) and cos (x,/8°) are to be considered as abbreviations for any
fluctuating functions of periods 8% and B° respectively.

Similar assumptions can easily be made when other fluxions appear. The convenience
in choosing p, = 1 is now evident, though, as far as the equations were concerned, it
made no difference, as only the ratios of p, p;, and p, entered into them.

The limits within which the property holds are evidently given by the discussion of
Art. 21. ‘

23. If all the highest of all the fluxions of any of the dependent variables appear in
U in the first degree only, the foregoing reasoning would not hold, as all the varia-
tions of that dependent variable appearing in 8*U would then vanish at the limits,
and therefore the variation 8°U when taken over a small region would be zero com-
pared to quantities of the order «® (When there is only one independent variable
there must be some one highest fluxion, but in general there is a group of fluxions
higher than any others, not usually identical with what have been called the “highest
fluxions,” Art. 20, but included in them; it is only when each member of this
group vanishes that the exception occurs.) It is known, however, that in this case it
is, in general, impossible to fulfil the limiting conditions by means of the arbitrary
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functions arising from the solution of the partial ditferential equations. This excep-
tion is well known in the simpler cases, but I am not aware that it has been generally
discussed.

A partial differential equation between independent variables @, . . . a, and
dependent variables ¥, . . . ¥, will, in general, require for the complete deter-
mination of #,, . .. ¥y, several sets of limiting conditions; for instance, one set
when w, has its limiting values x, = fi(x;, . . . @,y) and fi(x;, . . . ®._y), and
another set when w,_;=f, (z, . . . x,_p) and fi(x, . . . ®._y), and so on until,
finally, there is a set derived from @, = ¢, and #;, =¢;. But in the particular
case in which the conditions at the limits are the values of ¥y, . . . v, dy,/dx,,

. dy./dx,, d*y)dd?,, &c., for a single surface flx), @, . . . ®,) =0 the
functions ¥, . . . y, will be completely determined without any further limiting
conditions (provided the proper number of conditions be given), and when the
limiting conditions are of this character there is no difficulty in finding the
requisite number of conditions relative to each variable. The limiting equations
furnished by the Calculus of Variations are not, however, so simple as this, being of the
dual character above. But, as this does not affect the number of the conditions at the
limiting values of z,, it will serve our purpbse to find the number of conditions neces-
sary in the simpler case. Let there be n equations, represented by (1), (2), . . . (n),
between the n dependent variables v, %, .. . %, and let the highest order of
differentiation with respect to any independent variable in which ¥, appears in (s) be
[7,s]. Then, provided each dependent variable appears in each equation, it can easily
be shown that the number of conditions necessary to determine the dependent vari-
ables is the greatest of the sets of numbers 3 [7, s], so chosen that in each set there is
one term corresponding to each variable and one to each equation. For from § 22 it
is evident that the number of functions required is the same as if there was but one
independent variable, for the values of the single set y, dy/dx, d*y/dx?, &c., at the
boundary determine those of all the other fluxions of y. We may, therefore, discuss
the question on the supposition that there is but one independent variable. Now it is
evident that, if we could determine all the successive differential coefficients of each
function for each point of the bounding surface, we could, by TAYLOR’S theorem,
expand the function in a series ; and we know the limiting values of the differential
coefficients of the y functions with regard to all variables x;, x,, &c., when we know
those for any variable (Art. 22). Hence the problem will be solved if we show how
many of the limiting values we must assume in order to determine all the rest. But we
can show that it is possible to find the first Y, quantities of the series v, dy,/dx,, . . .
dY Yy, [de, 715 the first Y, quantities y,, dy,/dx,, . . . d% ly,/de; ™1 ; and so on for
the rest, provided we assume = [7, s] of these functions; Y, and Y,, &c., being, if
necessary, indefinitely large. For differentiate the equation (1) ¢; times, the equation
(2) a, times, and so on. Since we are not to introduce any differential coefficients of
orders higher than Y, —1, Y, — 1, these being the orders of the highest fluxions in
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Y,, Y,, &c., we must have, considering only fluxions of ¥, a; +[1, 1] Z Y, — 1,
ay+[1, 2]2Y, — 1, and so on, one inequality from each equation. Again,
from considering the order of differentiation of w,, a; + [2, 1] 2 Y, — 1, ay, +
[2, 2] 2 Y, — 1, and so on. Since every differentiation gives us a new equation,
among the quantities in question we get altogether n + a; + ay + &e. + «,
equations ; hence the difference between this and Y, + Y, 4+ &c. must be equal to
the number of quantities to be assumed in order to solve these equations. It is easy
to see that the most favourable way in which the differentiations a,, a,, &c., can be
disposed consistently with the inequalities to be satisfied will give the number stated
above as the least number of this difference. Now suppose the equations obtained
in the Calculus of Variations from making the coefficients of &y, Sy,, . . . Sy,
vanish are denoted by (1), (2), ... (n), and let the [1] denote the highest
differential coefficient of ¥, occurring in the second or in a higher degree in the
function to be made synclastic, [2] that of y,, and so on ; then it is easy to see that v,
cannot enter into the equation (p) by fluxions of order higher than {7]+[p], and that
y, will enter into it in the order 2p. Hence in this case [p] + [r] =[pr], [] + [p]
= [rp], and we have for this case to find the set for which 2[p, r]is greatest. Now,
since we are to take one index for each equation, in our 3{(p) + ()} we are to take
only one term from equation (r), and hence () on the right-hand side is to appear only
once. Moreover, we are to take only one term from each variable, and therefore we
are simply to tuke S{(p)+3 ()}, where each refers to the values (1), (2), (3), &ec.; and
hence, in all, double the sum of the order of the highest of all the fluxions of each
variable in the expression to be made synclastic. But this is exactly the number of
the conditions supplied by equating the limiting terms of 8U to zero in the expression
to be integrated, except in the case we are at present discussing (where some of the
highest of all the fluxions do not appear in the second degree, but in the first only);
and therefore in this case the limiting conditions cannot be satisfied, and the problem
becomes, in general, incapable of solution.

MDCCCLXXXVIT,—A. 8
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